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The Three-Dimensional Algorithm of Solving the

Electric Field Integral Equation Using Face-Centered

Node Points, Conjugate Gradient Method, and FFT
Ching-Chuan Su

Abstract—It has been known for a long time that the accuracy
of solving the scattering by a dielectric body using the electric

field integral equation (EFIE) is poor when the permittivity of the

scatterer becomes large. Recently, such a trouble has been settled

by using a procedure involving face-centered node points. Such a

procedure is efficient, since it preserves the convolution property

in the EFIE and, hence, the applicability of the fast Fourier

transform. In this investigation we generalize this procedure to
the three-dimensional and anisotropic case. The generalization
is quite straight in both the formulation and the programming.
A calculation for a scatterer with a relative permittivity of as
high as 100 indicates that the proposed procedure converges
quite rapidly, while the conventional approach fails to converge
in using the conjugate gradient method.

I. INTRODUCTION

T O CALCULATE the scattering by a homogeneous di-

electric body with arbitrary shape, methods involving

surface integral equations have been developed [1 ]–[3], where

the unknown fields appear only on the scatterer surface.

For an inhomogeneous body the scattering problem is much

more involved, since the unknown fields to be solved are

distributed within the entire body. In the special case of a

“body of revolution,” the scattering problem can be reduced

to a two-dimensional one, for which a method employing

the finite-element technique has been proposed [4]. For a

general three-dimensional scatterer, methods for solving time-

harmonic Maxwell’s equations in the differential form (using

the finite-element or finite-difference technique) may be too

complicated and do not yet appear in the literature, to our

knowledge. To deal with such a general problem, the method

based on the electric field integral equation is widely em-

ployed. To solve the integral equation numerically, the method

employing the block model in conjunction with the pulse-

function expansion and the point-matching technique is simple

in the programming and is quite popular [5]–[7]. Moreover,

the efficiency of this method in both the computational speed

and memory requirement can be greatly improved by a use

of the conjugate gradient method (CGM) and the fast Fourier

transform (FFT) [8]–[10].

Recently, it has been pointed out that condition numbers

of the resulting matrices increase as the perrnittivities are
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increased, if the conventional numerical procedure is used

[9]. Since the solutions are sensitive to minor variations in

the elements of ill-conditioned matrices, one has to model the

scatterer accurately by using more flexible cells and employ

higher-order basis functions [11]–[13]. Essentially, such proce-

dures do not improve the conditions of the resulting matrices.

Furthermore, since the convolution property in the EFIE may

be deteriorated, the memory requirement is prohibitively large

and the efficient FFT can not be applied.

To attack such a trouble, we have proposed a new procedure

using the face-centered node points [14]. Such a procedure is

more accurate, since the condition numbers of the correspond-

ing matrices can be kept small, regardless of the magnitudes

of the perrnittivity. And the polarization charge induced at the

cell surfaces can be modeled more accurately. Furthermore,

this procedure is efficient, since the convolution property

in the EFIE is preserved. In this investigation, we general-

ize this algorithm involving face-centered node points, the

CGM, and the FFT to deal with the electromagnetic scattering

from a three-dimensional and anisotropic (biaxial) dielectric

body.

II. ELECTRIC FIELD INTEGRAL EQUATION

The electric field E due to time-harmonic current and charge

sources radiating in free space with angular frequency w can

be written in terms of the magnetic vector potential A and the

electric scalar potential @:

E(r) = Ei(r-) – j(.JA(r) – V@(r-). (1)

Here

A(T-) = No
///

G’(koR)J(7-’) Ch-’ (2a)

0(7-) = : J// G(koR)p(T’) b’, (2b)

G(koR) = exp (–jkoR)/47rR denotes Green’s function in

free space, R = /r–r’l, k. = w-, and J and p denote, re-

spectively, the electric current and charge density distributions,

excluding the sources generating the incident electric field IZi.

Consider the scattering problem of a dielectric body composed

of biaxial material, of which the off-diagonal components of

the tensor permittivity distribution co~(r) are zero. Expressing

0018-9480/93$03.00 0 1993 IEEE



SU 3-D ALGORITHM OF SOLVING THE ELECTRIC FIELD INTEGRAL EQUATION

the polarization current density J and polarization charge

density p in terms of J?3,one obtains the electric field integral

equation

E(r) = Ei(T-)+ k;!// G(koR)~(r’) .E?(r’) dr’

%.—
///

G(koR)p(/) dr’, (3)
.50

—
where ~ = ? – ~, and ~ is the unit dyad. Using the continuity

equation the polarization charge density p in (3) can be

expressed as

p(7’) = –q)v . ~(r) . E(r)] (4a)

= Cov.E(r). (4b)

In obtaining (4b) the continuity of displacement V. (~. E) = O

has been made use of and hence (4b) is valid only for those

regions having no free charge sources. The integrations in (3)

are over the interior and the surface of the scatterer. Thus,

the surface charges, which may reside on the scatterer surface,

have been taken into account. Equation (3) consists of three

coupled integral equations in terms of E., Ey, and E,, and

the resultant field l?(r) should be found by solving the three

coupled integral equations implied in (3).

III. NUMERtCAL PROCEDUREFOR

FACE-CENTERED NODE POINTS

Scattering from an arbitrary body is identical to that from a

rectangular body composed of the arbitrarily-shaped scatterer

and the surrounding space with ~ = O. Divide the rectangular

body into ml x rn2 x rns identical cells which are rectangular

parallelepipeds of volume AW = Ax x Ay x AZ (Fig. 1).

Since the node points are located at the cell surfaces, the

(ml – 1) x (rnz – 1) x (ma – 1) cells should enclose the

entire scatterer. Suppose the cells are small enough that the

three components in :(z, y, z) may be treated as constant

over each of the cells. Thereafter, pulse-function expansion

and point-matching technique are employed in the numerical

calculation. As in [14], in order to keep the resulting matrix

well-conditioned and to represent the induced polarization

charge more accurately, the node points at which the fields

are to be solved are not placed at the center of each cell;

rather, are placed at the centers of the faces of each rectangular

parallelepiped. And, thes, y, and z components of the electric

field are sampled and matched at the face-centered node points

marked crosses, squares, and dots, respectively (Fig. 1), such

that all these fields axe the normal components with respect to

the corresponding faces.

No polarization charges are induced in a homogeneous

medium, isotropic or anisotropic. Thus, in the block model, the

polarization charges are induced only on the faces of cells and

can be determined from the normal components of the electric

fields at the faces. From the continuity of displacement it is

known that the z component of the field and the permittivity

distribution satisfy the following relation at the face separating

@
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Fig. 1. An rectangular body composed of
cal, rectangular cells with volume Av =

ml x m2 x ms identi-
Az x Ay x Az, The

(ml – 1) x (mz – 1) x (m~ – 1) cells should enclose the entire scatterer.
The crosses ( x), squares (~), and dots (.) are the face-centered node points,

at which the ‘E:, E;, and’ E. are to be ‘s~pled and matched, respectively.

cells (i,~, k) and (i – 1,~, k):

ec(i,.j, k)Exl = cz(i – :1,j, k)Ez2, (5)

where Ezl and EZ2 are the fields at the center of this face,

approaching from cells (i, j, k) and (i – 1, j, k), respectively.

At a face separating two blocks of dissimilar media the

charge density becomes impulsive. From (4b) and (5) the

corresponding surface charge density Psz at this face-centered

node points can be given by either one of the following two

formulas in terms of EZ2 or E.1:

psz = EoEa2[G(i – l,j, k) – cz(i, j, k)]/G(i, j, k) (6a)

= @zl[ez(i – l,j, k) – 6$(i, j,k)]/6z(i – l,j, k).

(6b)

A key step of the proposed method is: we choose either

(6a) or (6b) as the formula to represent the surface charge

density in the integral equation (3) and, hence, take either

EZ2 or E.l as an unknown field (designated E.(z, j, k)
hereafter) to be solved according to whether e. (i, j, k) or

~. (i – 1, j, k) is larger in magnitude. By this algorithm, the

large one between CZ(i, j, k) ~d 6Z(i – 1, j, k) always appears

on the denominator in the chosen formula. Consequently,

the off-diagonal elements in the resulting matrix and hence

the condition number can be kept small, regardless of the

magnitudes of the permittivities involved. In this manner, the

node point is not exactly placed at the face, but approaches

the face from the side where the permittivity is smaller. The
same procedure is used to choose the y and ,z components as

unknown fields in the integral equation.

Then, on applying the pulse functions to expand the un-

known field E(r) and using the point-matching technique,

the integral equation (3) reduces to a set of 3A4 (WI =

ml x mz x mq) simultaneous linear equations in terms of
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3Ll unknowns E(i, j, k) as

Ew(i, j,k) =E; (i, j, k) + sp(i, j,k)iw(i, j,~)~u(~>~,~)

m~—1m~—1 m~—1

{

+ ~ ~ ~ g(i–z’, j–j’, k– k’)
il=l) jf=o kf=o

. )&(i’, j’, k’)Ep(i’, j’, k’)

+ ~ !lWv(i–i’, j –j’, k– k’)
I/=z, y,z

}
.~v(i’, j’, ik’)Ev(i’, j’, k’) ,

/L=x, y,.z
Z=t), l,. .. ml-l

j=o, l,. ..rr l-l
(7)

k=o,l,... ml–l

where E; (i, j, k) denotes the incident field at an associated

face-centered node point at which the field EP (z, j, k) is

sampled. The function g denotes the value of k~ times the

integral of Green’s function over a cell and its numerical

values can be approximated as

( -1+ e-~~o”(l +jkoa)

g(i, j, k) =
{

i= O,j=O, andk=O

k; G(koR)AIJ,
(8)

( - oth~rwi~e

where a3 = 3Av/47r and R2 = (iAz)2 + (jiAy)2 + (kAz)2.

(Do not confuse the purely imaginary number j with index

j.) The functions g~~, gg~, and gzc are given as the integrals
of the x, y, and z components of VG over a face of size

Ay x Az, respectively. They can be evaluated numerically in

a way similar to that in [10]. For larger arguments, simple

formulas without numerical integration can be given as

g.. (~,j, ~) = –AYAz(l + jkoR)e-~kO~(iAz) /4mR3,

i#O, j#O, ork#O (9a)

gw(i, ~>k) = A~[G(koRl) – G(koR2)], (9b)

and

9az(ij, ~) ‘AYIG(~o~I) – G(ko~3)], (9C)

where

RI = {[(i+ 0.5)A~]2 + [jAy]2 + [kAz]2}l/2,

R2 = {[(i+ 0.5)Ax]2 + [(j – l)Ay]2 + [kAz]2}lf2,

and

R3 = {[(i+ 0.5)Ax]2 + [jAy]2 + [(k – l) Az]2}l/2.

The other g~v functions can be obtained in a similar way.

For g~P (O, O, O) an analytical integration yields + ~, depending

on the associated face-centered node point approaches the

face from which side. Such indefinite terms deteriorate the

convolution property in the EFIE. To avoid this trouble,

we let gZZ(O, O,O) = gyV(O, O,O) = gZZ(O, O, O) = O and,

accordingly, introduce

{

~ lEz(i,j, k)l > Icz(i - l,j, k)l ~loa)
%(~,~>~) = g, otherwise

{-

} l%(i~>~)l> l%f(i.7’- 1,~)1Sy(z, j,k) =
otherwise

(lOb)
~1

and

{
i

\cz(i,j, k)l > Iez(i,j, k - 1)1 ~loc)
Sz(i, j,k) = ——2> otherwise

The functions X& and X& in (7) correspond to the effects of

the induced polarization charge and current, respectively. They

are given by

Iz(i, j, k) = {cz(i,.j, k) – em(i – l,j, k}/cZ~aX, (ha)

lv(i>~,k) = {~v(i>~>k) – ~y(i>~ – l>k}/~vrnaX, (llb)

lz(~!j, ~) = {~z(~,j, ~) – %(i,.1, k – l}/ezmax, (llC)

Xz(ij, ~) = {%(i J’,k)%(i – l,j, k)
- ;[.z(i,j, k) + ,Z(i - l,j, k)]}/,zmax

> (12a)

xg(~)~,~) = {~y(~>~>~)~y(~,~ – 1,~)

- ;[ey(i,.ik) + Cy(i.?’ - l,k)]}/cynlax

> (12b)

and

X.(i, j, k) = {e(ij, ~)%(ij, ~ – 1)

- ;[,z(i,j, k) + q(i,j, k - l)]}/ezmax

> (12C)

where cz~~~, e~~~~, and ~zmax denote the larger ones in
magnitude between Cz(i, ~, k) and c~(i – 1, ~, k), ~V(i,~, k)

and Cy(i, j – l,k), and between c.(i, j,k) and e.(i, j,k – 1),

respectively. In writing (12), the contribution of the polar-

ization current is averaged between two adjacent cells. Note

that at an interface separating two blocks of similar media, the

polarization charge is set to zero automatically, as it should be.

As discussed in the two-dimensional counterpn-t [ 14], with

the G max, q max j ~d e max emerging on the denominators in

(11), the condition number of the resulting matrix is kept small,

regardless of the magnitude of the permittivity distribution.

Consequently, the simple block model in conjunction with the

pulse-function expansion and point-matching technique works

well. Thereby, the convolution property in the EFIE and hence

the applicability of the FFT can be preserved.

IV. SOLUTION PROCEDURE USING CGM AND FFT

Simultaneous equations (7) can be arranged in a 3AZ x 3&f

matrix equation

xix = b, (13)

where, A is a 3iM x 3ikf full matrix whose entries correspond

tog, gpv, xp, and ~~, and x and b are 3iV1-dimensional vectors
whose components correspond to Ew(i, j, k) and E~(i, j, k),
respectively. One can obtain the solution z by inverting the

matrix A. Such an inverting procedure is inefficient, howeveq

since it requires (3i14) 2 storage locations of complex data and
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a computation time of (3&l) 3/3 times Tc, where Tc denotes

the computation time for a complex multiplication. In this

investigation we employ the conjugate gradient method and

the FFT to solve (7) or, equivalently, the matrix equation (13).

Such a procedure is more efficient, in that it requires only about

160M storage locations of complex data and a computation

time about 30Jf2 logz M“ times T..
The conjugate gradient method (CGM) [15], [16] begins

with an arbitrary starting vector Z., from which one evaluates

the residue vector To by the formula

To= b–ko. (14)

Then, each iteration step consists of the operations evaluating

the orthogonalization coefficient &e, the correction direction

vector de, the correction coefficient Te, the new solution X1+l,

and the new residue Tl+l by the following formulas

{

4=0
(15a)~’= ;Ar,ll’/llArL-lll’> 1= 1,2...

de = Are + ifidl-l, / =0,1,2... (15b)

vt = \@rg112/llAdg112, (15C)

Xe+l = XL + ~edl, (15d)

and

where A =

conjugate and

the norm of a

re+l = re — ~gAde, (15e)

(A*)’, superscripts * ~d t mean complex

transpose, respectively. In (15), the square of

vector v, IIvl 12, is defined as (v*)tv. The key

point of this method is that using the formulas given in (15),

the calculated vectors AI-4, 1 = 0,1. -., become mutually

orthogonal. Then, for a nonsingular matrix A of order n, Arl

and hence rl will become null vectors for 1 > n. That is

one will obtain a numerically exact solution with at most

n iteration steps, if the round-off error can be neglected.

In this investigation the termination criterion is defined as

llr~ll/\lb\l < io-4.

It is obvious that the major computation in each iteration

step lies in the two multiplications: Ade and Arl or, equiva-

lently, the 6A4 summations shown in (16a) and ( 16b) at the

bottom of the page, with p = a,y, z,i = 0,1,. . ml – l,j =

o,l,...m2- 1,and k = 0,1, 0. .m3 – 1. In (16), the three-

dimensional ml x mz x ms arrays Du(i, j, k) and RP(i, ~, k)

correspond to vectors de and re, respectively. It needs about

24&f2 multiplications for the 6h4 summations. However, it is

seen that the triple summations involved in (16) is of the form

of three-dimensional convolution and hence can be performed

using the three-dimensional fast Fourier transform (FFT) as

Dw(i, j, k) – Sp(i, j, k)ip(~,.j, ~)~#(~,~, ~)

{ )– E;; ~[91~[xP~LJ + yj ~[9twlmJLl ‘
V=x,$,l,z

(17a)

and

– X;(i ~, fwij;{~[91*wJ}

– i;(i ~>W;;
{ }

~ ~[d”~[~vl , (1’7b)
V=x,y,,z

where Fi;~ denotes entry ij k in the resulting three-dimensicmal

array after the inverse FFT, and $’ means an FFT operating

on an nl x nz x n3 three-dimensional array with nl >

2m1 – l,n2 ~ 2m2 – l,n3 ~ 2m3 – 1, and nl, n2, and

n3 are chosen to be integer powers of 2. The arguments of

the functions g(i, j, k) and gPv(i, j, k) are within –ml < i <

ml, –m2 < j < m2, and –m3 < k < m3. In (17), we

make g and gwv be nl x nz x ns (periodic) arrays, by letting

the functional values be zero when tine arguments lie outside

the ranges. Accordingly, we have extended the ml x mz x m3

arrays DP and Rp into nl x n2 x n3 arrays, with Dp (i, j, k) =

R~(i, j,k)=O, whenm15i Snl-l, mz<j Snz–l, or
m3 s k s n3 – 1. In (17b) we also made use of the property

_“&’yy { (
g i – i’, j –j’, k – k’)xp(i’, j’, k’)Dw(i’, j’, k’)

i~=o jl=o kf=o

}
- ~ guv(~-~’>~-~’>~-~’)iv(~’,~’,~’)Dv(~’,~’>~’) ,

V=x,y, z

and

Rfl(i, j, k) – Sp(i, j, k)i;(z, j, k) Rp(z>~, ~)

ml-1m2—lm2—1

– x;(i,~,~) ~ ~ ~ g“(i’ – i,j’ –j, k’ – k) Rp(i’, j’, k’)
if=O j’=0 kf=O

(16a)

(16b)
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Fig. 2. Field distribution along the z direction at t = v = O. The relative
permittlvity e = 2, L = 0.5A, and A. = (0.15A)2. The squares (~) and

triangles (A) are the results calculated using the present method and that in
[10], respectively. The z component of the electric field is discontinuous at
z = +0.25 A, the ends of this finite cylinder.

F’[~*(-i, –j, –k)] = F[$(i, j, k)]”, where ~ is an arbitrary

nl x n2 x n3 periodic array [17]. The FFT’s pertaining to

g and g~u are performed once for all iteration steps. These

transforms needs 10IV storage locations of complex data,

where ~ = nl x n2 x n3. The major computation in each

iteration step requires 18 nl x nz x n3-point FFT’s, each FFT

in turn requires about ~(log2 lV) complex multiplications.

V. NUMERICAL RESULTS

To check the accuracy of the proposed method, we compare

the results calculated using the present and the conventional

procedures [10]. We consider a homogeneous, isotropic cylin-

der with a finite length L in the z direction and a square

cross section of size A.. This finite cylinder has a small
relative permittivity e = 2, L = 0.5A, and Ac = (0.15A)2,

where A is the wavelength in free space. The incident field is

assumed to be a plane wave, Ei = ~e–~ko z. The associated

field distributions along z at z = O,~ = O (the origin of

the coordinates is located at the center of the scatterer) are

shown in Fig. 2. It is seen that these two results are in good

agreement. When the permittivity c is increased to as large as

100, the CGM iteration process in the conventional procedure

[10] does not converge at all. Whereas, the present procedure

converges quite rapidly. The field distributions are shown in

Fig. 3. The scatterer is modeled with 3 x 3 x 10 cubic cells

(while, ml = 4, m2 = 4, and m3 = 16). For the cases

in Fig. 3(a) and (b), the cell size is 0.1 and 0.05 internal

wavelength and the number of iteration to reach convergence

is 27 and 35 (the number of unknowns is 768), respectively.

VI. CONCLUSION

The procedure involving face-centered node points has

been generalized to the three-dimensional and anisotropic

(biaxial) case. Thus, the scattering from a dielectric body

with a large permittivity can be handled. Since the resulting

matrices are well-conditioned, the simple pulse-basis block

model can be used. An important benefit is that the convolution
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I \
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I
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-.025 . erim .025 .050

z/A

(a)

4. ~

EZ13”“

9,\
,\
,\
,\
I
I ‘h
I \
I \

\
I R

1-1 ~’
/tf

0
I

-.85 . Be . 0s . 10
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(b)

Fig. 3. Field distributions along the u du-ection at z = y = (). The
relatwe permittivity e = 100. (a) L = 0.05A, AC = (0.015A)Z; (b)
L = 0.1 A,.4C = (o.03x)~.

property in the EFIE is preserved and, hence, the FFT can

be applied. This efficient solution procedure requires about

160M complex storage locations and a total computational task

of about 301Vf2 log2 Al complex multiplications. The saving

in computational cost becomes more significant for larger

scatterers and/or finer discretizations, where the number of

cells M is increased.

The calculations made in this investigation were perfotmed

on a personal computer where the maximum M was limited

to 256. Ten times this number or more may be possible on a

larger machine. Since the major computational task lies in the

calculation of FFT, the speed of the proposed method may be

greatly improved if a hardware FFT processor is used.
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