510 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 41, NO. 3, MARCH 1993

The Three-Dimensional Algorithm of Solving the
Electric Field Integral Equation Using Face-Centered
Node Points, Conjugate Gradient Method, and FFT

Ching-Chuan Su

Abstract—1It has been known for a long time that the accuracy
of solving the scattering by a dielectric body using the electric
field integral equation (EFIE) is poor when the permittivity of the
scatterer becomes large. Recently, such a trouble has been settled
by using a procedure involving face-centered node points. Such a
procedure is efficient, since it preserves the convolution property
in the EFIE and, hence, the applicability of the fast Fourier
transform. In this investigation we generalize this procedure to
the three-dimensional and anisotropic case. The generalization
is quite straight in both the formulation and the programming.
A calculation for a scatterer with a relative permittivity of as
high as 100 indicates that the proposed procedure converges
quite rapidly, while the conventional approach fails to converge
in using the conjugate gradient method.

I. INTRODUCTION

O CALCULATE the scattering by a homogeneous di-
electric body with arbitrary shape, methods involving
surface integral equations have been developed [1]-[3], where
the unknown fields appear only on the scatterer surface.
For an inhomogeneous body the scattering problem is much
more involved, since the unknown fields to be solved are
distributed within the entire body. In the special case of a
“body of revolution,” the scattering problem can be reduced
to a two-dimensional one, for which a method employing
the finite-element technique has been proposed [4]. For a
general three-dimensional scatterer, methods for solving time-
harmonic Maxwell’s equations in the differential form (using
the finite-element or finite-difference technique) may be too
complicated and do not yet appear in the literature, to our
knowledge. To deal with such a general problem, the method
based on the electric field integral equation is widely em-
ployed. To solve the integral equation numerically, the method
employing the block model in conjunction with the pulse-
function expansion and the point-matching technique is simple
in the programming and is quite popular [5]-[7]. Moreover,
the efficiency of this method in both the computational speed
and memory requirement can be greatly improved by a use
of the conjugate gradient method (CGM) and the fast Fourier
transform (FFT) [8]-[10].
Recently, it has been pointed out that condition numbers
of the resulting matrices increase as the permittivities are

Manuscript received October 24, 1991; revised July 21, 1992.

The author is with the Department of Electrical Engineering, National
Tsinghua University, Hsinchu, Taiwan, 30043, Republic of China.

IEEE Log Number 9205454.

increased, if the conventional numerical procedure is used
[9]. Since the solutions are sensitive to minor variations in
the elements of ill-conditioned matrices, one has to model the
scatterer accurately by using more flexible cells and employ
higher-order basis functions [11]-[13]. Essentially, such proce-
dures do not improve the conditions of the resulting matrices.
Furthermore, since the convolution property in the EFIE may
be deteriorated, the memory requirement is prohibitively large
and the efficient FFT can not be applied.

To attack such a trouble, we have proposed a new procedure
using the face-centered node points [14]. Such a procedure is
more accurate, since the condition numbers of the correspond-
ing matrices can be kept small, regardless of the magnitudes
of the permittivity. And the polarization charge induced at the
cell surfaces can be modeled more accurately. Furthermore,
this procedure is efficient, since the convolution property
in the EFIE is preserved. In this investigation, we general-
ize this algorithm involving face-centered node points, the
CGM, and the FFT to deal with the electromagnetic scattering
from a three-dimensional and anisotropic (biaxial) dielectric
body.

II. ELECTRIC FIELD INTEGRAL EQUATION

The electric field E due to time-harmonic current and charge
sources radiating in free space with angular frequency w can
be written in terms of the magnetic vector potential A and the
electric scalar potential @:

E(r) = E'(r) — jwA(r) — V&(r). €]
Here

Alr) = uo///G(k‘OR)J(r/) dr! (2a)

&(r) = %///G(koR)p(r/) dr’, (2b)

G(koR) = exp(—jkoR)/4mR denotes Green’s function in
free space, R = |r—7'|, ko = w\/Lo€o, and J and p denote, re-
spectively, the electric current and charge density distributions,
excluding the sources generating the incident electric field E.
Consider the scattering problem of a dielectric body composed
of biaxial material, of which the off-diagonal components of
the tensor permittivity distribution €gé(r) are zero. Expressing
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the polarization current density J and polarization charge
density p in terms of F, one obtains the electric field integral
equation

E(r) =E'(r) + k? / / / G(koR)x(r') - E(r') dr'

- %v / / / G(koR)p(r') dr', 3)

where X = €— I, and I is the unit dyad. Using the continuity
equation the polarization charge density p in (3) can be
expressed as

(4a)
(4b)

p(r) = =V - [xX(r) - B(r)]
= Eov . E(‘I‘)

In obtaining (4b) the continuity of displacement V- (¢-E) = 0
has been made use of and hence (4b) is valid only for those
regions having no free charge sources. The integrations in (3)
are over the interior and the surface of the scatterer. Thus,
the surface charges, which may reside on the scatterer surface,
have been taken into account. Equation (3) consists of three
coupled integral equations in terms of F;, E,, and E., and
the resultant field E(r) should be found by solving the three
coupled integral equations implied in (3).

III. NUMERICAL PROCEDURE FOR
FACE-CENTERED NODE POINTS

Scattering from an arbitrary body is identical to that from a
rectangular body composed of the arbitrarily-shaped scatterer
and the surrounding space with X = 0. Divide the rectangular
body into m X mo X mg identical cells which are rectangular
parallelepipeds of volume Av = Az x Ay x Az (Fig. 1).
Since the node points are located at the cell surfaces, the
(my — 1) x (mg — 1) x (mg — 1) cells should enclose the
entire scatterer. Suppose the cells are small enough that the
three components in €(z,y, 2) may be treated as constant
over each of the cells. Thereafter, pulse-function expansion
and point-matching technique are employed in the numerical
calculation. As in [14], in order to keep the resulting matrix
well-conditioned and to represent the induced polarization
charge more accurately, the node points at which the fields
are to be solved are not placed at the center of each cell;
rather, are placed at the centers of the faces of each rectangular
parallelepiped. And, the z, y, and z components of the electric
field are sampled and matched at the face-centered node points
marked crosses, squares, and dots, respectively (Fig. 1), such
that all these fields are the normal components with respect to
the corresponding faces.

No polarization charges are induced in a homogeneous
medium, isotropic or anisotropic. Thus, in the block model, the
polarization charges are induced only on the faces of cells and
can be determined from the normal components of the electric
fields at the faces. From the continuity of displacement it is
known that the = component of the field and the permittivity
distribution satisfy the following relation at the face separating
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Fig. 1. An rectangular body composed of m; X mgy X m3 identi-
cal, rectangular cells with volume Av = Az x Ay x Az. The
(m1 — 1) X (m2 — 1) X (m3 — 1) cells should enclose the entire scatterer.

The crosses (X ), squares (W), and dots () are the face-centered node points,
at which the E;, Ey, and E, are to be sampled and matched, respectively.

cells (¢,4,k) and (¢ — 1,4, k):
€x(ty 5, k)Ep1 = €2(1 — 1,4, k) Eyo, 5)

where E,1 and E,» are the fields at the center of this face,
approaching from cells (4, 7, k) and (i — 1, j, k), respectively.
At a face separating two blocks of dissimilar media the
charge density becomes impulsive. From (4b) and (5) the
corresponding surface charge density p,, at this face-centered
node points can be given by either one of the following two
formulas in terms of F,5 or F,.1:

psz = €gFgale, (i — 1,j, k) — €x(i,4,k)]/ex(3,5.k)  (6a)
= COEa:l[em(i - Lja k) - €w(iaj7 k)]/eﬂc(l - 1aj, k)
(6b)

A key step of the proposed method is: we choose either
(6a) or (6b) as the formula to represent the surface charge
density in the integral equation (3) and, hence, take either
Egs or E;; as an unknown field (designated E,(i,j,k)
hereafter) to be solved according to whether €,(i,7,k) or
€z(i — 1,4, k) is larger in magnitude. By this algorithm, the
large one between ¢,(%, 7, k) and €, (i — 1, j, k) always appears
on the denominator in the chosen formula. Consequently,
the off-diagonal elements in the resulting matrix and hence
the condition number can be kept small, regardless of the
magnitudes of the permittivities involved. In this manner, the
node point is not exactly placed at the face, but approaches
the face from the side where the permittivity is smaller. The
same procedure is used to choose the y and z components as
unknown fields in the integral equation.

Then, on applying the pulse functions to expand the un-
known field E(r) and using the point-matching technique,
the integral equation (3) reduces to a set of 3M (M =
m1 X ma X mg) simultaneous linear equations in terms of
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3M unknowns E(i,j,k) as

E,u(i, 4, k) = E. (6,5, k) + 8,0, 5, k) Ru (i, 5, k) B (i, 4, k)
mi;—1mge—1mg—1
{g(i i j =4 k~k)

IS
’Xu(ilvjlak/)Eu(i/7j,7k/)

=0 j'=0 k'=0
+ > gw(i—1, -4 k—k)

v=xy,z

')A(V(i/aj/> k/)Eu(i/ajl7 kl)})

u:x7y’z

ZZO,I,' -my —1

7=0,1,---mg—1 7
k=0,1,---mg—1

where Ej (3,7, k) denotes the incident field at an associated
face-centered node point at which the field E,(¢,4,k) is
sampled. The function g denotes the value of k2 times the
integral of Green’s function over a cell and its numerical
values can be approximated as

~1+ e %02 (1 4 jkga)
1=0,7=0,andk =0 (8)
2
k§G(koR)Aw,
otherwise
where a® = 3Av/4r and R? = (iAz)? + (jAy)? + (kAz)2.
(Do not confuse the purely imaginary number j with index
j.) The functions gz, gye, and g, are given as the integrals
of the z,y, and z components of VG over a face of size
Ay x Az, respectively. They can be evaluated numerically in
a way similar to that in [10]. For larger arguments, simple
formulas without numerical itegration can be given as

9uu(i, 5, k) = —AyAz(1 + jkoR)e~ "B (i Az) /4x R3,

g(i, g, k) =

1#0,j#0,0rk#0 (9a)
ye(t, 7, k) = Az[G(koR1) — G(koR2)), (9b)
and
=2 (1,5, k) =Ay[G(koR1) — G(koR3)], (9c)
where

Ry = {[(i + 0.5)Ax]? + [jAy]® + [kAZ]?}1/2,

Ry = {[(i + 0.5)Az]* + [(j — DAy] + [kAz]*}/2,
and

Ry = {[(i + 0.5)Az]* + [Ay]? + [(k — 1)AZ]*}/2.

The other g,, functions can be obtained in a similar way.
For g,,,(0,0,0) an analytical integration yields :I:%, depending
on the associated face-centered node point approaches the
face from which side. Such indefinite terms deteriorate the
convolution property in the EFIE. To avoid this trouble,
we let 9,-(0,0,0) = g,,(0,0,0) = ¢..(0,0,0) = 0 and,
accordingly, introduce

vt ={ |

T

|6$(7;vj’ k)| > |6$(z - 11j7 k)l

otherwise (102)

. L ey (4,5, k)] > |ey (3,5 — 1,k)|
sy(6,5,k) = { ——2%-, otherwise (10b)
and
NI — l ’Ez(i,j,k)|> |62(7’7.77k_1>|
5:(1,5, k) = { —%2, otherwise (10c)

The functions %, and x, in (7) correspond to the effects of
the induced polarization charge and current, respectively. They
are given by

)A(w(iaj) k) = {em(i?ja k) - em(i - 1,4, k}/ezmax, (11a)
)A(y(iaja k) = {Ey(i,j, k) - Ey(za.] - 1, k}/eymaxy (llb)
Xz, 7,k) = {ez(3,4, k) — €:(4, 5,k — 1} /€zmax, (11c)

Xe(t, 7, k) ={ex (8, j, k)ex (i — 1,4, k)
- %[Gm(i,j, k) + ew(i -1 k)]}/exmax
, (12a)
Xy(iajv k) = {éy(i,j, k)ey(iaj - 17 k)
— pley (.3, k) + €y (i, 5 — 1]} eymax
(12b)

and

XZ(iaja k) - {Ez(iaj7 k)ez(iaja k— 1)
- %[Gz(i,j, k) + Gz(i,j, k— 1)]}/€zmax
3 (12C)

where €zmax, €ymax. and €;max denote the larger ones in
magnitude between e,(7,7,k) and €y(i — 1,7,k),€,(%,4,k)
and €,(4,7 — 1, k), and between ¢, (4, j, k) and €. (3, j, k — 1),
respectively. In writing (12), the contribution of the polar-
ization current is averaged between two adjacent cells. Note
that at an interface separating two blocks of similar media, the
polarization charge is set to zero automatically, as it should be.

As discussed in the two-dimensional counterpart [14], with
the €xmax, €ymax, aNd €,;max emerging on the denominators in
(11), the condition number of the resulting matrix is kept small,
regardless of the magnitude of the permittivity distribution.
Consequently, the simple block model in conjunction with the
pulse-function expansion and point-matching technique works
well. Thereby, the convolution property in the EFIE and hence
the applicability of the FFT can be preserved.

IV. SOLUTION PROCEDURE USING CGM AND FFT

Simultaneous equations (7) can be arranged in a 3M x 3M
matrix equation

Az =b, (13)

where, A is a 3M x 3M full matrix whose entries correspond
t0 g, Guw» Xpy and X, and x and b are 3M -dimensional vectors
whose components correspond to E,(i,j, k) and EZL(Z, 7, k),
respectively. One can obtain the solution by inverting the
matrix A. Such an inverting procedure is inefficient, however;
since it requires (3M)? storage locations of complex data and
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a computation time of (3M)3/3 times T, where T, denotes
the computation time for a complex multiplication. In this
investigation we employ the conjugate gradient method and
the FFT to solve (7) or, equivalently, the matrix equation (13).
Such a procedure is more efficient, in that it requires only about
160M storage locations of complex data and a computation
time about 30M?2log, M times 7T,.

The conjugate gradient method (CGM) [15], [16] begins
with an arbitrary starting vector o, from which one evaluates
the residue vector r¢ by the formula

To = b— AZ(). (14)
Then, each iteration step consists of the operations evaluating
the orthogonalization coefficient &,, the correction direction
vector dyg, the correction coefficient -,, the new solution 441,
and the new residue r;; by the following formulas

0 £=0
D ; 15
o {HAfellz/llATe—lllza t=12... ¥
dy=Are+&dey,  £=0,1,2-  (15b)
e = [|Are|/l|Ade], (15¢)
Ter1 = Te + Yede, (15d)
and
Ter1 =T — Ve Ady, (15¢)
where A = (A*)!, superscripts * and ¢ mean complex

conjugate and transpose, respectively. In (15), the square of
the norm of a vector v, ||v||?, is defined as (v*)'v. The key
point of this method is that using the formulas given in (15),
the calculated vectors Arg, £ = 0,1---, become mutually
orthogonal. Then, for a nonsingular matrix A of order n, Ar,
and hence 7, will become null vectors for £ > n. That is
one will obtain a numerically exact solution with at most
n iteration steps, if the round-off error can be neglected.
In this investigation the termination criterion is defined as
e/ 1Bl < 1072,

It is obvious that the major computation in each iteration
step lies in the two multiplications: Ad, and ;11'1 or, equiva-
lently, the 6M summations shown in (16a) and (16b) at the
bottom of the page, with p = z,y,2,i =0,1,.--m; — 1,5 =
0,1,---mg ~1,and k = 0,1,---mgz — 1. In (16), the three-
dimensional my x my X mg3 arrays D, (4, 7,k) and R, (3,5, k)
correspond to vectors dy and 74, respectively. It needs about
24M? multiplications for the 6 summations. However, it is
seen that the triple summations involved in (16) is of the form
of three-dimensional convolution and hence can be performed
using the three-dimensional fast Fourier transform (FFT) as

Su(i’j) k))%[t(zaja k)DM(II’vjv k)

Fy {F [G)F[xuDul + > FlgulFl%D,] }

V=1,y,2

D“(i,j, k) -

(17a)
and

Rﬂ'(i ja k) - SM('L' Js ))A(:;(Z Js k)R (iaj7 k)
~ X (i, 4, F)F 55 { Flg]* FIRy]}

— X (6,5, k) mk{ > Flg,u'F

u]}a (17b)
Vv=x,Y,2

where FJ,& denotes entry ¢k in the resulting three-dimensional
array after the inverse FFT, and F means an FFT operating
on an nj X ng X ng three-dimensional array with n; >
2mi — L,ng > 2mg — L,ng 2> 2mg — 1, and ny,n9, and
ng are chosen to be integer powers of 2. The arguments of
the functions g¢(3, j, k) and g, (4, 4, k) are within —m; < i <
my,—mg < j < mg, and —mg < k < mg. In (17), we
make g and g, be n; X ny X n3 (periodic) arrays, by letting
the functional values be zero when the arguments lie outside
the ranges. Accordingly, we have extended the m; X ma X mg
arrays D, and R, into n1 X ng X ng arrays, with D, (¢, 5, k) =
R,(i,5,k) =0,whenm; <i<ny—1,ma <j<my—1,0r
mg < k < ng — 1. In (17b) we also made use of the property

D#(iaja k) -

m1—1 mz—l m3—1

-2 2 )

=0 j'=0 k'=0

Su(iaja k))zﬂ(z’.% k)Dp,(za]’ k)

{g(’i - i/,j - j,a k — kl)Xu(i/7jla k,)D#(i,ajla kl)

- Z g“,,(i—i',j—j/,k—k/)f(,,( ;Jak)D( 7.7 k/)} (16a)
v=e,y,2
and
R, (i, 5,k) — s,(3, 4, k)x;(i,j, k)R, (i, 4, k)
mi—1mo—1ma—1
ALY Z g°(@ = 4,5 — 5,k — B)Ru (&', 5", k')
=0 3'=0 k'=
mi— 1m2 1m3 1
—f(:l(i,], Z Z Z Z g,,u(’t _Z’J _]ak _k)R( 7.7 kl)a (]6b)

v=w,y,z =0 j'=0 k’'=0
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Fig. 2. Field distribution along the z direction at * = y = 0. The relative
permittivity ¢ = 2,L = 0.5X, and A; = (0.15))%. The squares (W) and
triangles (A) are the results calculated using the present method and that in
[10]. respectively. The z component of the electric field is discontinuous at
z = %0.25A, the ends of this finite cylinder.

Ff*(—i,—3,—-k)] = F[f(3,7,k)]*, where f is an arbitrary
n1 X ng X ng periodic array [17]. The FFI’s pertaining to
g and g, are performed once for all iteration steps. These
transforms needs 10NN storage locations of complex data,
where N = n; X ny X n3. The major computation in each
iteration step requires 18 n1 X ng X ns-point FFT’s, each FFT
in turn requires about N (logaN) complex multiplications.

V. NUMERICAL RESULTS

To check the accuracy of the proposed method, we compare
the results calculated using the present and the conventional
procedures [10]. We consider a homogeneous, isotropic cylin-
der with a finite length L in the z direction and a square
cross section of size A.. This finite cylinder has a small
relative permittivity ¢ = 2,L = 0.5}, and 4. = (0.15))2,
where A is the wavelength in free space. The incident field is
assumed to be a plane wave, E' = 2¢7%0% The associated
field distributions along z at + = 0,y = 0 (the origin of
the coordinates is located at the center of the scatterer) are
shown in Fig. 2. It is seen that these two results are in good
agreement. When the permittivity ¢ is increased to as large as
100, the CGM iteration process in the conventional procedure
[10] does not converge at all. Whereas, the present procedure
converges quite rapidly. The field distributions are shown in
Fig. 3. The scatterer is modeled with 3 x 3 x 10 cubic cells
(while, my; = 4,my = 4, and m3 = 16). For the cases
in Fig. 3(a) and (b), the cell size is 0.1 and 0.05 internal
wavelength and the number of iteration to reach convergence
is 27 and 35 (the number of unknowns is 768), respectively.

VI. CONCLUSION

The procedure involving face-centered node points has
been generalized to the three-dimensional and anisotropic
(biaxial) case. Thus, the scattering from a dielectric body
with a large permittivity can be handled. Since the resulting
matrices are well-conditioned, the simple pulse-basis block
model can be used. An important benefit is that the convolution
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Fig. 3. Field distributions along the = direction at z = = 0. The

Y
relatve permittivity e = 100. (a) L = 0.05A, Ac = (0.0150)% (b)

L = 0.1\ 4, = (0.03))2.

property in the EFIE is preserved and, hence, the FFT can
be applied. This efficient solution procedure requires about
160M complex storage locations and a total computational task
of about 30M?2log, M complex multiplications. The saving
in computational cost becomes more significant for larger
scatterers and/or finer discretizations, where the number of
cells M is increased.

The calculations made in this investigation were performed
on a personal computer where the maximum M was limited
to 256. Ten times this number or more may be possible on a
larger machine. Since the major computational task lies in the
calculation of FFT, the speed of the proposed method may be
greatly improved if a hardware FFT processor is used.

REFERENCES

[1] P. Barber and C. Yeh, “Scattering of electromagnetic waves by arbitrar-
ily shaped dielectric bodies,” App! Opt., vol. 14, pp. 28642872, Dec.
1975.

[2] T. K. Wu and L. L. Tsai, “Scattering from arbitrarily-shaped lossy
dielectric bodies of revolution,” Radio Sct., vol. 12, pp. 709-718, Sept.
1977.

[3] K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering
by arbitrary shaped three-dimensional homogeneous lossy dielectric



SU: 3-D ALGORITHM OF SOLVING THE ELECTRIC FIELD INTEGRAL EQUATION

(4]

(51

[6]

7

[8]

9]

[10]

(113

[12]

[13]

objects,” IEEE Trans. Antennas Propagat., vol. AP-34, pp. 758-765,
June 1986.

M. A. Morgan and K. K. Mei, “Finite-element computation of scatter-
ing by inhomogeneous penetrable bodies of revolution,” IEEE Trans.
Antennas Propagat., vol. AP-27, pp. 202-214, Mar. 1979.

D. E: Livesay and K. M. Chen, “Electromagnetic fields induced inside
arbitrarily shaped biological bodies,” IEEE Trans. Microwave Theory
Tech., vol. MTT-22, pp. 1273-1280, Dec. 1974.

K. M. Chen and B. S. Guru, “Internal EM field and absorbed power
density in haman torsos induced by 1-500-MHz EM waves,” I[EEE
Trans. Microwave Theory Tech., vol. MTT-25, pp. 746=756, Sept. 1977.
M. J. Hagmann, O. P. Gandhi, and C. H. Durney, “Numerical calculation
of electromagnetic eénergy deposition for a realistic model of man,” IEEE
Trans. Microwave Theory Tech., vol. MTT-27, pp. 804-809, Sept. 1979.
D. T. Borup and O. P. Gandhi, “Calculation of high-resolution SAR
distributions in biological bodies using the FFT algorithm and conjugate
gradient method,” IEEE Trans. Microwave Theory Tech., vol. MTT-33,
pp. 417419, May 1985.

C. C. Su, “Calculation of electromagnetic scattering from a dielectric
cylinder using the conjugate gradient method and FFT,” IEEE Trans.
Antennas Propagat., vol. AP-35, pp. 1418-1425, Dec. 1987.

, “Electromagnetic scattering by a dielectric body with arbitrary
inhomogeneity and anisotropy,” IEEE Trans. Antennas Propagat., vol.
37, pp. 384-389, Mar. 1989.

S. C. Hill, C. H. Durney, and D. A. Christensen, “Numerical calculations
of low-frequency TE fields in arbitrarily shaped inhomogeneous lossy
dielectric cylinders,” Radio Sci., vol. 18, pp. 328-336, May 1983.

D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral
modeling method for. electromagnetic scattering by arbitrarily shaped
inhomogeneous dielectric bodies,” IEEE Trans. Antennas Propagat., vol.
AP-32, pp. 77-85, Jan. 1984.

C. T. Tsai, H. Massoudi, C. H. Durney, and M. F. Iskander, “A procedure
for calculating fields inside arbitrarily shaped, inhomogeneous dielectric
bodies using linear basis functions with the moment method,” IEEE

[14]

[15]

[16]

[17]

515

Trans. Microwave Theory Tech., vol. MTT-34, pp. 1131-1138, Nov.
1986. (For comments, see IEEE Trans. Microwave Theory Tech., vol.
35, pp. 785-786, Aug. 1987.). : :
C. C. Su, “A procedure of solving the electric field integral equation for
a dielectric scatterer with a large permittivity using face-centered node
points,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 10431048,
June 1991.

M. R. Hestenes and E. Stiefel, “Method of conjugate gradients for
solving linear systems,” J. Res. Nat. Bur. Stand., vol. 49, pp. 409436,
Dec. 1952. .

F. S. Beckman, “The solution of linear equations by the conjugate
gradient method,” in Mathematical Methods for Digital Computers, vol.
1, A. Ralston and H. S. Wilf, Eds. New York: Wiley, 1960, pp. 62-72.
A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Engle-
wood Cliffs, NJ: Prentice-Hall, 1976, p. 110.

Ching-Chuan Su was born in Taiwan, on October
2, 1955. He received the B.S:, M.S., and Ph.D: de-
grees in electrical engineering from National Taiwan
University in 1978, 1980, and 1985, respectively.
From 1980 to 1982, he was employed at the
Industrial Technology Research Institute, Hsinchu,
Taiwan, where he was responsible for the develop-
ment of several IC fabrication processes for MOS
products. In 1985 he joined the faculty of National
Tsinghua University, Hsinchu, Taiwan, where he is
an Associdte Professor of Electrical Engineering.

&

His research arcas include fabrication of ferroelectric memory device, nu-
merical solutions in scattering, waveguide, resonator, and MOS circuit, and
electromagnetic theory.



